12 research outputs found

    Changes in Motor Competence after a Brief Physical Education Intervention Program in 4 and 5-Year-Old Preschool Children

    Get PDF
    Low motor competence (MC) can cause low participation in physical activities in preschool children, and together with a high caloric intake, it can lead to obesity. Interventions on motor skills are effective in the short term to improve MC, therefore the objectives of this study were (1) to investigate the effect of a short six-week program on levels of motor competence in preschool children, and (2) to examine the effects of gender-based intervention. A total of 156 preschool children (5.20 ± 0.54 years old) from Lugo (Spain) participated. A quasi-experimental pre–post-test design was used with a control group of 76 students. The Movement Assessment Battery for Children—2nd Edition (MABC-2) was used to collect the data. Significant differences between the control and experimental groups were found after the intervention program in aiming and catching (p < 0.001), balance (p < 0.001), the total score of eight tests (p < 0.001), and total percentile score (p < 0.001). The results regarding gender in the experimental group showed a reduction in differences with respect to the initial results except in aiming and catching, where scores were higher in boys. The data suggest that the application of specific intervention programs in MC could positively influence the improvement of MC in preschool children, thus reducing differences between gendersS

    Automated medical diagnosis of alzheimerÂŽs disease using an Efficient Net convolutional neural network

    Get PDF
    Producción CientíficaAlzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach—"fusion of end-to-end and transfer learning"—to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Optimal Modeling and Feasibility Analysis of Grid-Interfaced Solar PV/Wind/Pumped Hydro Energy Storage Based Hybrid System

    No full text
    Access to inexpensive, clean energy is a key factor in a country’s ability to grow sustainably The production of electricity using fossil fuels contributes significantly to global warming and is becoming less and less profitable nowadays. This work therefore proposes to study the different possible scenarios for the replacement of light fuel oil (LFO) thermal power plants connected to the electrical network in northern Cameroon by renewable energy plants. Several scenarios such as the combination of solar photovoltaic (PV) with a pumped hydro storage system (PHSS), Wind and PHSS and PV-Wind-PHSS have been studied. The selected scenarios are evaluated based on two factors such as the system’s total cost (TC) and the loss of load probability (LOLP). To achieve the results, metaheuristics such the non-dominated sorting whale optimization algorithm (NSWOA) and non-dominated sorting genetic algorithm-II (NSGA-II) have been applied under MATLAB software. The optimal sizing of the components was done using hourly meteorological data and the hourly power generated by the thermal power plants connected to the electrical grid. Both algorithms provided satisfactory results. However, the total cost in the PV-PHSS, Wind-PHSS, and PV-Wind-PHSS scenarios with NSWOA is, respectively, 1%, 6%, and 0.2% lower than with NSGA-II. According to NSWOA results, the total cost for the PV-Wind-PHSS scenario at LOLP 0% is 4.6% and 17% less than the Wind-PHS and PV-PHSS scenarios, respectively. The profitability study of all three scenarios showed that the project is profitable regardless of the scenario considered

    Transmission Network Loss Reduction and Voltage Profile Improvement Using Network Restructuring and Optimal DG Placement

    No full text
    This paper introduced a method using hybrid combination of network restructuring and optimal placement of optimally sized distributed generators (DG) to reduce loss and improve voltage profile in a practical transmission network for scenario of high load demand for a period of ten years. A study is performed for four study cases which includes the test transmission network without considering optimal DG placement and network restructuring, considering network restructuring, optimal placement of DG units using proposed grid parameter oriented harmony search algorithm (GPOHSA) and considering hybrid combination of network restructuring and DG placement using GPOHSA. Network restructuring is achieved by addition of a new 400 kV Grid-substation (GSS) and a 220 kV GSS along with associated transmission system. GPOHSA is obtained by a modification in the conventional harmony search algorithm (HSA) where grid coordinates are used for locating the individuals in an objective space. Performance Improvement Indicators such as real power loss reduction indicator (SPLRI), reactive power loss reduction indicator (SQLRI) and summation of node voltage deviation reduction indicator (SNVDRI) are proposed to evaluate performance of each case of study. The period of investment return is assessed to evaluate the pay back period of the investments incurred in network restructuring and DG units. It is established that hybrid combination of network restructuring and DG units placement using GPOHSA is effective to meet the increased load demand for time period of ten years with reduced losses and improved voltage profile. Investment incurred on the network restructuring and DG units placement will be recovered in a time period of 4 years. Effectiveness of the GPOHSA is better relative to the conventional genetic algorithm (GA) for DG unit placement. The study is performed using the MATLAB software on a practical transmission network in India

    Forecasting of Post-Graduate Students’ Late Dropout Based on the Optimal Probability Threshold Adjustment Technique for Imbalanced Data

    No full text
    The purpose of this research article was to contrast the benefits of the optimal probability threshold adjustment technique with other imbalanced data processing techniques, in its application to the prediction of post-graduate students’ late dropout from distance learning courses in two universities in the Ibero-American space. In this context, the optimization of the Logistic Regression, Random Forest, and Neural Network classifiers, together with different techniques, attributes, and algorithms (Hyperparameters, SMOTE, SMOTE_SVM, and ADASYN) resulted in a set of metrics for decision-making, prioritizing the reduction of false negatives. The best model was the Neural Network model in combination with SMOTE_SVM, obtaining a recall index of 0.75 and an f1-Score of 0.60. Likewise, the robustness of the Random Forest classifier for imbalanced data was demonstrated by achieving, with an optimal threshold of 0.427, very similar metrics to those obtained by the consensus of the three best models found. This demonstrates that, for Random Forest, the optimal prediction probability threshold is an excellent alternative to resampling techniques with different optimal thresholds. Finally, it is hoped that this research paper will contribute to boost the application of this simple but powerful technique, which is highly underrated with respect to data resampling techniques for imbalanced data

    Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection

    Get PDF
    Automated dental imaging interpretation is one of the most prolific areas of research using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental diseases. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, as well as machine and deep learning models for dental disease diagnoses using X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone and region-based network (RPN) are proposed for periapical disease localization on a small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN is evaluated on a custom annotated dataset comprising images of five different types of periapical lesions. The results reveal that the model can detect and localize periapical lesions with an overall accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%. The proposed model improves the detection, classification, and localization accuracy significantly using a smaller number of images compared to existing methods and outperforms state-of-the-art approaches

    A novel smart belt for anxiety detection, classification, and reduction using IIoMT on students’ cardiac signal and MSY

    No full text
    Producción CientíficaThe prevalence of anxiety among university students is increasing, resulting in the negative impact on their academic and social (behavioral and emotional) development. In order for students to have competitive academic performance, the cognitive function should be strengthened by detecting and handling anxiety. Over a period of 6 weeks, this study examined how to detect anxiety and how Mano Shakti Yoga (MSY) helps reduce anxiety. Relying on cardiac signals, this study follows an integrated detection-estimation-reduction framework for anxiety using the Intelligent Internet of Medical Things (IIoMT) and MSY. IIoMT is the integration of Internet of Medical Things (wearable smart belt) and machine learning algorithms (Decision Tree (DT), Random Forest (RF), and AdaBoost (AB)). Sixty-six eligible students were selected as experiencing anxiety detected based on the results of self-rating anxiety scale (SAS) questionnaire and a smart belt. Then, the students were divided randomly into two groups: experimental and control. The experimental group followed an MSY intervention for one hour twice a week, while the control group followed their own daily routine. Machine learning algorithms are used to analyze the data obtained from the smart belt. MSY is an alternative improvement for the immune system that helps reduce anxiety. All the results illustrate that the experimental group reduced anxiety with a significant (p < 0.05) difference in group × time interaction compared to the control group. The intelligent techniques achieved maximum accuracy of 80% on using RF algorithm. Thus, students can practice MSY and concentrate on their objectives by improving their intelligence, attention, and memory.Sichuan Science y Programa de Tecnología - (2020YJ0225)China NSFC - (U2001207 y 61872248)Guangdong NSF - (2017A03031200385)Fundación de Ciencia y Tecnología de Shenzhen - (ZDSYS20190902092853047 y R2020A045)Project of DEGP - (2019KCXTD005)Guangdong “Pearl River Talent Recruitment Program” - (2019ZT08X603

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population
    corecore